
Scientific Visualization, 2019, volume 11, number 5, pages 1 - 11, DOI: 10.26583/sv.11.5.01 

Memory-effective methods and algorithms of  

shader visualization of digital core material model 
 

M.V.  Mikhaylyuk1, P.Yu. Timokhin2 

 
Federal State Institution "Scientific Research Institute for System Analysis  

of the Russian Academy of Sciences" (SRISA) 
 

1 ORCID: 0000-0002-7793-080X, mix@niisi.ras.ru 
2 ORCID: 0000-0002-0718-1436, webpismo@yahoo.de 

 
Abstract 
The paper deals with the task of real-time visualization of digital core material model 

(DCM) obtained by X-ray computed tomography. Novel approach, effective methods and al-
gorithms for visualization of large allocated volume of DCM are proposed, which are based on 
high-performance programmable tessellation capability of commodity graphics cards with a 
multicore graphics processing unit (GPU). The methods provide an effective video memory 
usage and a high visualization rate for the ranges of absorption coefficient, corresponding to 
pore space or mineral skeleton of the core material. The solution proposed is based on visual-
ization of trihedral polygonal models of visible voxels and on the original system for con-
structing such models on GPU by means of tessellation shaders developed. Based on these 
methods and algorithms, a program module is developed, which implements 3D visualization 
of the allocated volume of DCM and the construction of porosity plot. The program module 
was tested on the DCMs of Bazhenov formation and sandstone, that confirmed adequateness 
of developed solution to the task arisen.  

  
Keywords: visualization, digital core model, real-time, voxel rendering, pore space, po-

rosity, GPU, tessellation, shader.  

 

1. Introduction 
One of the important tasks in the field of up-to-date oil and gas engineering is computer re-
search of pore space and mineral skeleton of the core material [1]. As the basis of the research 
a digital core material model (DCM) obtained by X-ray computed tomography is used. Mi-
crotomograph determines the values of X-ray absorption coefficient for the core material in 
3D grid cells, after that these values are scaled and saved in special file (file data set). 
Effective means to extract scientific knowledge from such data is visual analysis which point 
is to present large amounts of data in a form where a researcher could see things that are dif-
ficult to identify algorithmically. Presently, the development of effective methods of the visual 
analysis of large volumes of digital data is being carried out by many reputable research 
teams, in particular, one can highlight an interesting method of elastic maps for the visual 
analysis of multidimensional data sets of various origins [2]. In the field of visual analysis of 
digital core material models, various methods for 3D visualization of virtual models of pore 
space and mineral skeleton are being actively evolved [3]. One of the basic ones is the visuali-
zation of the allocated volume in a virtual scene, which comprises only the cells of DCM, that 
correspond to the range of absorption coefficient values, specified by a researcher. These cells 
are visualized as cubes (voxels), where each cube is rendered taking into account its illumina-
tion in the virtual scene, and the color of the cube corresponds to absorption coefficient value 
in this cell. 

https://doi.org/10.26583/sv.11.5.01
mailto:mix@niisi.ras.ru
mailto:webpismo@yahoo.de


To carry out the visual analysis of DCM effectively, the visualization of allocated volume 
should be real-time (with a frame rate of at least 25 times per second), as well as the volume 
should cover an area of DCM large enough to be representative. The challenge is, that render-
ing time and video memory consumption highly increase, when size of allocated volume is 
getting bigger. Therefore, visualization rate critically decreases for wide ranges of absorption 
coefficient corresponding to pore space or mineral skeleton of the core material. For this rea-
son, a task of development of new approaches, methods, and algorithms allowing to over-
come these restrictions, and basing on modern graphics hardware and software capabilities is 
arisen. 
In this paper we propose a novel approach and effective methods, and algorithms, which im-
plement real-time visualization of large allocated volumes of DCM on a personal computer 
equipped with a commodity graphics card with a multi-core graphics processor (GPU). The 
solution proposed is based on visualization of trihedral polygonal models of visible voxels 
which are created on GPU in parallel and independently from each other, by means of origi-
nal shader computing system. 

2. Approaches to visualize a digital core material model 
One of conventional approaches to visualize voxel data, in particular, a digital core material 
model, is “ray casting” [4, 5]. A ray is being emitted through every pixel of synthesized image 
of allocated volume (generally it is a parallelepiped) until this ray crosses the first cell satisfy-
ing sampling condition (the cell’s absorption coefficient value falls within the range specified 
by a researcher). Searching for such intersection is based on checking the cells which the ray 
traverses. This means that visualization time of a single voxel highly depends on the size of 
allocated volume, and the number of affected pixels, as well as the screen resolution. These 
dependencies are time-consuming for real-time rendering of large allocated volume (of 

3
1000  cells and higher) on modern screens with high resolution (Full HD, Ultra HD). Due to 
this, different accelerating techniques and data structures are used, that needs additional 
memory and extra-time for data preprocessing. Consumption of these resources rapidly in-
creases with the rising of volume size, that significantly limits application of the approach on 
personal computers (about 16 GB RAM, 11GB VRAM). For instance, well-known program 

complex Paraview [6] spends about 5Gb RAM to render an allocated volume of 
3

600  cells 
with a small sampling range of absorption coefficient (about 800 counts). And if we specify a 
wider sampling range, for example, for pore space (about 9000 counts), then memory con-
sumption will come out of the limits. 
Another approach is to visualize the cells of sampling by means of polygonal (triangulated) 
cubic models [7-9]. Its efficiency depends on consumption of time and video memory for con-
struction and visualization of a single polygonal cube. In the age of multicore GPUs using a 
hierarchical VRAM structure, the bottleneck of visualization of multiple simple polygonal 
models is the number of invocations to global video memory (the largest and the slowest part 
of VRAM). One way [7] to reduce it is to store in global video memory all polygonal cubic 
models (positions of vertices, colors and normals), to be rendered, as continuous arrays - ver-
tex buffer objects (VBO), which are read by GPU very efficiently. However, this way is accom-
panied by extensive video memory costs (about 300 bytes per voxel), that limits its applicabil-
ity to visualization of only small and medium volumes.  Effective means to evade this limit is 
to use a geometry shader - one of the programmable stages of GPU graphics pipeline. This 
allows to construct a simple polygonal model for every voxel, in parallel, directly inside the 
graphics pipeline (without storing in global video memory), for instance, like in work [8]. To 
start one geometry shader thread, one vertex is enough to be sent to pipeline, therefore the 
VBO could be decreased up to 1 vertex per cubic model. Although, video memory consump-
tion is greatly reduced, the number of invocations of vertex shader (the first stage of the 
graphics pipeline, which addresses directly global memory) is still too high to visualize large 
allocated volumes in real-time. 



Relatively recently this was a serious limitation, till the two new programmable stages - the 
tessellation control shader and the tessellation evaluation shader were added to the graphics 
pipeline [10]. These stages are executed before geometry shader and are intended, in particu-
lar, to create, in parallel, regular grids of conventional graphics primitives out of special par-
ametric square primitives (patches). Based on tessellation shaders capabilities, new methods 
and algorithms to visualize large allocated volume of DCM were developed in this paper, so it 
allows to reduce VBO size and the number of vertex shader invocations up to 4 vertices (invo-

cations) per 2
65  cubic models. The Section 3 of the paper describes the developed method for 

construction of an effective polygonal model of visible cube surface, called “trefoil”, which we 
create in geometry shader. The Section 4 deals with developed methods and algorithms of 
parallel generating of vertices by means of tessellation shaders for starting geometry shader 
threads. 

3. A method to construct visible polygonal cube surface 
Let us consider the task of visualization of some volume M  extracted from 3D array of ab-
sorption coefficient values of DCM. The researcher specifies the volume in graphical user in-

terface by setting coordinate segments , , ,begin end begin end begin endx x y y z z            . Let’s introduce 

the following designations 
end beginn x x  , 

end beginm y y  , 
end beginq z z   and denote by aK  the 

3D array of absorption coefficient values in voxels of volume M . Inside the volume M  we 

will visualize only that voxels which absorption coefficient 
,min ,max,a a ak k k     (the range is also 

specified by the researcher). 
Denote by 

eyeP  the observer position in the virtual scene. Consider an arbitrary voxel (cube) of 

unit size from the volume M . Enumerate cube’s vertices as follows: 0 –  0,0,0 , 1 –  1,0,0 , 2 

–  0,1,0 , 3 –  1,1,0 , 4 –  0,0,1 , 5 –  1,0,1 , 6 –  0,1,1 , 7 –  1,1,1 . No matter, from which 

angle the cube will be observed, one will see no more than three faces of the cube. Actually, if 
voxel is located lower and to the left of 

eyeP  point, then observer will see right, top and front 

faces of the cube. Such three faces are unambiguously defined by their one common vertex 
and are formed in a figure, which we will call as a “trefoil”. Note, that if observer sees two (or 
even one) faces, then we add to observing one (two) degenerated faces. It is easy to see, that 
there are 8 various variants of a “trefoil” (see Fig. 1.). 
To determine which variant of a “trefoil” is seen from 

eyeP  position, we will check in View Co-

ordinate System (VCS, [11]) the cosines of the angles between  0,0,1vcse   (inversed viewing 

direction of the observer) and normals 
,0vcsn , 

,1vcsn , 
,2vcsn  to the right, top and front face of the 

cube. These normals are the same for all voxels for current visualization frame, and may be 

calculated as 
, ,vcs p norm ocs pn M n , where normM  is normal matrix, computed by taking the trans-

pose of the inverse of the upper-left 3 3  submatrix of the ModelView matrix [11], and 

 ,0 1,0,0ocsn  ,  ,1 0,1,0ocsn  ,  ,2 0,0,1ocsn   are normals to the right, top and front face of the 

cube in Object Coordinate System (OCS). It is easy to notice, that 
,vcs pn  will coincide with 

normM matrix columns. Note, that normals 
,0vcsn , 

,1vcsn  and 
,2vcsn  should be normalized after cal-

culation. 
 

The cosine of the angle between vcse  and 
,vcs pn  will equal to  , , ,,vcs vcs p vcs p ze n n . Then number 

t  of visible “trefoil” may be calculated as 

0 1 22 4t b b b   ,     (1) 

where 1pb  , if 
, , 0vcs p zn  , and 0pb   otherwise (  0,1,2p ). 



 

 
Fig. 1. Possible variants of a “trefoil”. 

 
Every “trefoil” S  we will visualize as a triangle strip. The strip is written as vertex number se-
quence where every three following vertices form a triangle. For our “trefoils” we get the next 

strips:  0 = 5,4,1,0,3,2,2,0,6,4S ,  1= 4,0,5,1,7,3,3,1,2,0S ,  2 = 1,0,3,2,7,6,6,2,4,0S , 

 3 = 5,1,7,3,6,2,2,3,0,1S ,  4 = 1,5,0,4,2,6,6,4,7,5S ,  5 = 0,1,4,5,6,7,7,5,3,1S , 

 6 = 0,4,2,6,3,7,7,6,5,4S ,  7 = 4,5,6,7,2,3,3,7,1,5S . Each of these strips contains two degener-

ated triangles which are not visualized and don’t consume computing resources. 
In order to visualize the “trefoil” properly (with correct illumination of its faces), it is neces-
sary to set the same normal (corresponding to cube face) for all vertices of every triangle in 
strip. This is not a trivial task, due to the fact that every next triangle in the strip uses two ver-
tices from the previous one. To resolve this challenge, we use a technique called “Provoking 
Vertex” [11] supported by all modern graphics cards. Its point is, if one disables interpolation 
mode for some vertex attribute, for instance, a color (by setting the shading mode to “flat-
shading”), then the entire graphics primitive will have the color of the last vertex (by default) 

called “provoking vertex”. In triangle strip of “trefoil”, the “provoking” is every  2g th  ver-

tex, where 1,2, ,8g   is running number of a triangle in the strip. 

In this paper, we visualize the strips of “trefoils” with disabled interpolation of vertex nor-
mals. Prior to this we specify the normals to cube faces for the “provoking” vertices of the 
strip. For this, we enumerate the normals to the faces as follows: 0 is normal 

,0vcsn  to the right 

face, 1 – normal 
,1vcsn  to the top face, 2 – normal 

,2vcsn  to the front face, 3 – normal 
,0vcsn  to 

the left face, 4 – normal 
,1vcsn  to the bottom face, 5 – normal 

,2vcsn  to the back face. For tri-

angle strips 0 7, ,S S , we obtain the following sequences of normal's numbers: 

 0 = *,*,4,4,0,0,0,0,5,5N ,  1= *,*,5,5,1,1,1,1,3,3N ,  2 = *,*,4,4,2,2,2,2,0,0N , 

 3 = *,*,3,3,1,1,1,1,2,2N ,  4 = *,*,4,4,5,5,5,5,3,3N ,  5 = *,*,0,0,1,1,1,1,5,5N , 

 6 = *,*,4,4,3,3,3,3,2,2N ,  7 = *,*,2,2,1,1,1,1,0,0N , where “*” denotes an arbitrary number of 

the normal (when processing the “provoking” vertices of the strip, the first two are skipped). 
To visualize the allocated volume M , we will create GPU threads (one for each voxel), which 
we will call “voxel threads”, and the sequence of shaders working in each stream. Consider it 
in detail. 
 

0 - (Left, Bottom, Back) 1 - (Right, Bottom, Back) 2 - (Left, Top, Back) 3 - (Right, Top, Back) 

4 - (Left, Bottom, Front) 5 - (Right, Bottom, Front) 6 - (Left, Top, Front) 7 - (Right, Top, Front) 



4. A method to calculate voxel threads using shader tessel-
lation  
Each “trefoil” will be visualized in a separate GPU thread. To create the threads, it is proposed 
to use programmable tessellation (subdivision into triangles) of graphics primitives. As a 

primitive, to be tessellated, we take a square (patch-quad) and divide it into 2l  small sub 

squares, which are formed by newly created  
2

1l   vertices (see Fig. 2). In up-to-date 

graphics cards the maximum value of l  is guaranteed to be at least 64, so we use it in our 
tests. 
Further, for every vertex a GPU thread will be created. The threads obtained from a single 
patch-quad will form a group of voxel threads. Groups can be represented as one-

dimensional array of size P P Pn m q  , where  1Pn n l    ,  1Pm m l     and Pq q . 

Thus, the number of patch-quads we need will also be equal P P Pn m q  . In addition, our so-

lution uses the following texture-based structures: 

 Bit map of voxels – 3D bit array  , ,B i j k  of n m q   size, where bit value equals 1, if 

absorption coefficient value ak  in the corresponding voxel belongs to the sampling range 

,min ,max,a ak k   . 

 Bit map of patch-quads – 3D bit array  , ,P P P PB i j k  of size P P Pn m q  , where bit val-

ue equals 1, if there is at least one voxel in the corresponding group of voxel threads, satis-
fying the sampling condition. 

 Color palette – array A  of 256 colors, where every absorption coefficient value is corre-
sponded to the specified color of palette. 

 Color index map – 3D array  , ,I i j k  of size n m q  , where 
, ,i j kI  represents indexed 

color of   , ,i j k th  voxel (we use 1-byte color indices). 

 

 
Fig. 2. Our visualization workflow. 

 
The array of patch-quads will be sent to the graphics pipeline in each visualization frame and 
processed by means of developed complex of shader programs. The complex includes tessel-
lation control (TC) shader, tessellation evaluation (TE) shader, geometry (G) and fragment 
shader. 



TC-shader runs simultaneously on all GPU cores and processes its own patch on each core. 

TC-shader computes three indices  , ,P P Pi j k  of the patch (as if the patch was stored in a 3D-

array of size P P Pn m q  ), as well as the numbers Wl  and Hl  of sub squares into which the 

patch will be subdivided during the tessellation. After the TC-shader is executed, the primi-
tive generator subdivides the patch (called further as original patch) into a group of vertices 

(the initiators of voxel threads) of size    1 1W Hl l   . This is a fixed stage of the graphics 

pipeline with a hardware-implemented algorithm. Generated vertices are given by positions 

 ,u v  in the original patch, where ,u v  are normalized real coordinates,  , 0,1u v . After sub-

dividing the original patch into vertices, TE-shader is performed which for each vertex of the 

vertex (thread) group generated calculates three voxel indices  , ,i j k  in the 3D-voxel array. 

The whole process described is implemented in the following 
 
Algorithm of generation of voxel threads 
1. Transfer to TC-shader the following parameters: 

 - , ,P P Pn m q  - the dimensions of 3D-array of patch-quads; 

 - slice P Pn n m  - the number of 2D-arrays of patch-quads (slices) in 3D-array of patch-

quads; 
 - 

patches P P Pn n m q  - the size of 3D-array of patch-quads; 

 - l  - the maximum number of sub quads along a single side of the patch-quad. 

2. Calculate indices  , ,P P Pi j k  of the patch: 

P

slice

id
k

n

 
  
 

,     P slice

P

patches

id k n
i

n

 
  
  

,     P P slice P Pj id k n i n   , 

where 0, 1patchesid n     is index of the patch in one-dimensional array of patch-quads (as-

signed to each patch automatically when it enters the graphics pipeline). 

3. If [ , , ] 0P P P PB i j k  , then  , ,P P Pi j k th  patch is not processed, and we exit the algorithm (to 

do it, we set the numbers Wl  and Hl  to 0). 

4. Calculate the numbers Wl  and Hl  of sub squares for the patch: 

   max min , 1 1 ,1W Pl l n l j    ,        max min , 1 1 ,1H Pl l m l i    . 

5. Subdivide the patch into a group of vertices of size    1 1W Hl l    using primitive genera-

tor. 

6. Transfer from TC-shader to TE-shader indices  , ,P P Pi j k  of the patch, as well as the num-

bers  

Wl  and Hl  of sub squares. 

7. Calculate indices Vi  and Vj  of vertex in vertex (thread) group generated: 

V Hi l v     ,     V Wj l u     , 

where  ,u v  are normalized real coordinates of vertex in original patch-quad, 0.01   is a 

small constant which compensates machine error of real numbers representation. 

8. Calculate indices  , ,i j k  of the voxel in 3D-voxel array: 

 1 P Vi l i i   ,      1 P Vj l j j    ,     Pk k . 

End of algorithm. 
 



The three indices  , ,i j k , calculated in TE-shader, unambiguously identify the voxel that will 

be visualized in the current voxel thread. The voxel is assumed to have unit dimensions. For 
such voxel, the developed G-shader constructs a polygonal model (strip) of a “trefoil”, using 
the following 
 
Algorithm of construction of visible “trefoil” 
1. Transfer to G-shader the following parameters: 

 -  , ,i j k  - the indices of the voxel in 3D-voxel array (from TE-shader); 

 - 
,0 ,5,...,vcs vcsn n  - the coordinates of normals to voxel cube faces in VCS system; 

 - mvM  - the current ModelView matrix; 

 - 
projM  - the projection matrix; 

2. If [ , , ] 0B i j k  , then  , ,i j k th  voxel is not visualized, and we exit the algorithm. 

3. Write positions 
,0 ,7,...,ocs ocsP P  of all vertices of the cube (voxel) in OCS system: 

0 0 0 1 1 1, , , 1, 1, 1x j y i z k x j y i z k         ; 

       

       

,0 0 0 0 ,1 1 0 0 ,2 0 1 0 ,3 1 1 0

,4 0 0 1 ,5 1 0 1 ,6 0 1 1 ,7 1 1 1

, , , , , , , , , , , ,

, , , , , , , , , , , .

ocs ocs ocs ocs

ocs ocs ocs ocs

P x y z P x y z P x y z P x y z

P x y z P x y z P x y z P x y z

   

   
 

4. Calculate positions 
,0 ,7,...,vcs vcsP P  and 

,0 ,7,...,ccs ccsP P  of all vertices of the cube in VCS system 

and in Clipping Coordinate System (CCS, [11]) respectively: 
 Loop by v  from 0 to 7 

, , , ,, .vcs v mv ocs v ccs v proj vcs vP M P P M P   

5. Calculate the number t  of visible “trefoil” according to Eq.(1). 

6. Set positions 
,0 ,7,...,ccs ccsP P   of vertices of the strip of the t th “trefoil” (see Section 3) in OCS 

system, as well as positions 
,0 ,7,...,vcs vcsP P   and coordinates 

,0 ,9,...,vcs vcsn n   of vertex normals of this 

strip in VCS system (we use it for simplifying illumination calculation in fragment shader): 
 Loop by s  from 0 to 9 

Get the number  ta N s , where tN  is an array of numbers of normals (see Section 3). 

Set 
, ,vcs s vcs an n  . 

Get the number  tb S s , where tS  is an vertex index array (see Section 3). 

Set 
, ,ccs s ccs bP P  , 

, ,vcs s vcs bP P  . 

 End of loop. 
 

7. Get the color 
, ,i j kC A I     of visible “trefoil”. 

8. Construct visible “trefoil” by generating vertices of strip tS  with positions 
,0 ,7,...,ccs ccsP P  , 

normals 
,0 ,9,...,vcs vcsn n   and color C . 

End of algorithm. 
 
The trefoil produced by G-shader is rasterized (a fixed stage of the graphics pipeline), result-
ing into pixels (fragments) forming the image of the trefoil. Pixel colors are calculated in par-
allel, independently of each other using developed fragment shader based on the Phong illu-
mination model [11] with directional light source. 
 



5. Results 
Based on proposed methods and algorithms, a program module for real time visualization of 
digital core material model was developed. 3D visualization of allocated volume of DCM and 
construction of porosity plot are implemented in the module. Options to change the sampling 
range of absorption coefficient values, as well as the size of allocated volume and its offset in-
side the digital core material model, are also provided. During the visualization the researcher 
may rotate, zoom in and out the allocated volume. The module is added to program complex 
«CoreSimulator» [9], developed in FSI SRISA RAS, which is designed for various researches 
of DCM. 
The program module was tested on personal computer equipped with NVidia GeForce GTX 
1080 Ti graphics card (3584 computing cores) at Full HD and Ultra HD. For the testing digi-
tal core material models of sandstone (  2600 2600 7360) and Bazhenov formation (

8 2560 2560 600 ) were used. Based on these data, a series of experiments, dealt with visu-

alization of allocated volume from 3
100  to 3

1000  cells, corresponding to pore space and 
mineral skeleton, was carried out. Figures 3 and 4 demonstrate example frames of visualiza-
tion of mesoporous (according to the classification used in [12]) core material of sandstone 
and poorly porous part of Bazhenov formation with granular dense inclusions. In all experi-
ments, real-time mode was maintained when visualizing up to 3,9 million visible voxels 
(about 23,5 million triangles). 
Also comparing video memory consumption (see Fig. 5) for constructing and visualization of 
the allocated volume between the solution developed, method basing only on geometry 
shader (GS) and method using fixed function pipeline (FFP) were provided. As a threshold for 
comparing video memory consumption, the amount of dedicated video memory installed on 
hi-end commodity graphics cards was chosen. The plot on Figure 5 demonstrates a significant 
advantage of our solution over GS and FFP methods, and, in contrast to them, the ability to 

work with allocated volumes of 
3

2000  cells. 
A comparison of time costs of reading the data from video memory, needed to render a single 
frame, is illustrated by the plot on Figure 6. The evaluation was being carried out based on 
average video memory bandwidth of 500 Gb/s and with time limit of 40 ms (corresponding 
to visualization rate of 25 frame/s). As seen from the plot, the reduced number of vertex invo-
cations, provided by our solution, allows the time costs to be significantly decreased compar-
ing to GS method. This opens an opportunity to treat allocated volumes of sizes more than 

3
1000  cells. Real time visualization of such volumes is a promising subject of future re-
searches. 
 



 
Fig. 3. A mesoporous part of sandstone DCM. 

 

 
Fig. 4. A part of Bazhenov formation DCM with dense inclusions. 

 



 
Fig. 5. Comparing video memory consumption q (in Gb) to construct a volume of d3 cells  size 

by means of FFP, GS methods and proposed solution (Our). 
 

 
Fig. 6. Comparing time costs t (in ms) to transfer data from video memory to GPU for render-

ing a volume of d3 cells size by means of FFP, GS methods and proposed solution (Our). 
 

6. Acknowledgements 
The publication is made within the state task on carrying out basic scientific researches (GP 
14) on topic (project) “34.9. Virtual environment systems: technologies, methods and algo-
rithms of mathematical modeling and visualization” (0065-2019-0012). 



References 
1. Betelin V. B., Smirnov N.N., Stamov L.I., Skryleva E.I. Developing the structure of core 

pores based on processing of tomography data // Proceedings in Cybernetics. – 2018. – 
№ 2 (30). – pp. 87-92. [in Russian]  
(https://drive.google.com/file/d/1tc7rJmObCV132tetV1j6AZfPULeA50Bl/view). 

2. Bondarev A.E., Bondarenko A.V., Galaktionov V.A. Visual analysis procedures for multi-
dimensional data // Scientific Visualization, Vol. 10, № 4, 2018, pp. 120-133 (doi: 
10.26583/sv.10.4.09) (http://sv-journal.org/2018-4/09/index.php?lang=ru) [in Rus-
sian]. 

3. Digital Sandstone Rock Analysis Scanned with High-Resolution X-ray Computed Tomog-
raphy // General Electric Oil & Gas Digital Solutions, 2014 
(https://youtu.be/BgbP0ovPYi8). 

4. Kaufman A., Cohen D., Yagel R. Volume graphics // Computer. – 1993. – Vol. 26, № 7. - 
pp. 51–64. 

5. Crassin C., Neyret F., Lefebvre S., Eisemann E. Gigavoxels: Ray-guided streaming for effi-
cient and detailed voxel rendering // Proceedings of the 2009 Symposium on Interactive 
3D Graphics and Games, ACM, 2009, PP. 15-22. 

6. ParaView (https://www.paraview.org/Wiki/ParaView). 
7. OpenGL Minecraft Style Volume Rendering (http://bytebash.com/2012/03/opengl-

volume-rendering/ ). 
8. Jabłoński S., Martyn T. Real-time voxel rendering algorithm based on Screen Space Bill-

board Voxel Buffer with Sparse Lookup Textures // In Proc. of WSCG - 24th Int. Conf. in 
Central Europe on Computer Graphics, Visualization and Computer Vision 2016, pp. 27-
36 
(https://otik.zcu.cz/bitstream/11025/29528/1/Jablonsky.pdf). 

9. Timokhin P. Yu., Mikhaylyuk M. V. Implementation technology of multitasking graphical 
shell of visualization system for digital model of the core material // Proceedings in Cy-
bernetics. – 2018. – № 3 (31). – pp. 247-254. [in Russian] 
(https://drive.google.com/file/d/1O3HtX518kfywQLnfObLWTVIzbm3swnh6/view). 

10. Nießner M., Keinert B., Fisher M., Stamminger M., Loop C., Schäfer H. Real-Time Ren-
dering Techniques with Hardware Tessellation // Computer Graphics Forum, Vol. 35 (1), 
2016, pp. 113-137 (doi: 10.1111/cgf.12714) 
(http://graphics.stanford.edu/~mdfisher/papers/realtimeRendering.pdf). 

11. Bailey M., Cunningham S. Graphics Shaders: Theory and Practice, Second Edition // CRC 
Press. – 2011. – 518 p. 

12. Hanin A. A. Porody-kollektory nefti i gaza i ih izuchenie [Oil and gas reservoir rocks and 
their study]. // Moscow: Nedra, 1969 [in Russian]. 

 

https://drive.google.com/file/d/1tc7rJmObCV132tetV1j6AZfPULeA50Bl/view
http://sv-journal.org/2018-4/09/index.php?lang=ru
https://youtu.be/BgbP0ovPYi8
https://www.paraview.org/Wiki/ParaView
http://bytebash.com/2012/03/opengl-volume-rendering/
http://bytebash.com/2012/03/opengl-volume-rendering/
https://otik.zcu.cz/bitstream/11025/29528/1/Jablonsky.pdf
https://drive.google.com/file/d/1O3HtX518kfywQLnfObLWTVIzbm3swnh6/view
http://graphics.stanford.edu/~mdfisher/papers/realtimeRendering.pdf

